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Airfoil in a Contracting or Diverging Stream
B. LAKSHMINARAYANA* and M. T. WHITE!

Pennsylvania State University, University Park, Pa.

A theoretical and experimental investigation of the flow around an airfoil in a contracting or diverging stream
is carried out in this paper. An expression for the vortex distribution, which satisfies the kinematic condition
on the airfoil surface and the Kutta condition at the trailing edge, is derived. The predicted values of the lift and
the surface pressure distribution, at various values of incidences and mean flow acceleration, agrees very well with
the measured values. In converging flow, the circulation and lift are found to increase with increase in velocity
ratio (ratio of outlet to inlet velocity). Considerable change in airfoil pressure distribution is observed, its effect
being dominant on the suction surface. With diverging mean flow, both circulation and lift decrease with
decrease in velocity ratio. The decrease in mean velocity seems to have dominant effect on the pressure surface.
Finally, the theoretical and experimental investigation seems to indicate that the ratio of lift coefficients, with
and without change in mean flow, can be expressed as CL/CL2d = VR, where VR = velocity ratio.
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Nomenclature

, An = Fourier coefficients [Eq. (11)]
= functions of 9 [Eqs. (13-1 5)]
= chord length
= lift coefficient (nondimensionalized with respect to

inlet dynamic head)
= loading coefficient (nondimensionalized with re-

spect to inlet dynamic head)
= static pressure coefficient (nondimensionalized with

respect to inlet dynamic head) [Eq. (30)]
= width of the channel (Fig. 1)

Subscripts
1
2
2d

= lift
= loading [Eq. (26)]
= static pressure
= mean velocity in the absence of the airfoil
= velocity perturbations due to airfoil camber
= velocity perturbations due to thickness
= velocity ratio U2/Ui
= coordinates (Fig. 1)
= angle of incidence
= total circulation around the airfoil
= strength of the vortex sheet
= camber function

= values at leading edge
= values at trailing edge
= two-dimensional (K = 0)
= suction surface
= pressure surface
= local values

I. Introduction

THE influence of boundaries on the fluid motion around
airfoil or airfoil system is of great practical importance in

aerodynamics. The investigations carried out hitherto are
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confined to walls parallel to the original motion. In this case,
the mean velocity past the airfoil remains constant. In
several applications, where accelerating or decelerating mean
flow is encountered, the mean velocity or the so called free-
stream velocity, which is the undisturbed velocity in the ab-
sence of the airfoil, cannot be considered constant along the
airfoil chord and it is essential to allow for its variation. One
of the common examples is when the neighboring surfaces of
the body (such as fuselage and wing nacelle) accelerate or
decelerate the mean flow through the wing. Furthermore, the
boundary-layer growth along the end walls of a wind tunnel or
water tunnel, in which a wing is tested, a change in mean veloc-
ity occurs and the aerodynamics or hydrodynamics of the
wing is appreciably changed. Other applications where the
change of mean flow velocity is encountered is in the flow
through compressor, propeller, pump or fan with diverging or
converging hub and annulus walls. Most of the modern day
compressors and fans have appreciable change in axial velocity
(10 to 20%).

Whereas the results of wing theory are widely used in pro-
peller (both shrouded and unshrouded) and fan design, the
compressor design is largely based on cascade flow theories.
Hence, an investigation of the effects of change in mean veloc-
ity is of considerable interest to not only the wing aerody-
namicist, but also to compressor, fan and propeller designers.
Furthermore, the development on airfoil theory (allowing for
change in mean velocity) is a first step in the solution of
cascade flow where the axial and mean velocities are changing
through the passage. Some advances have been made in
predicting the effect of axial velocity change through a cascade
by Shaalan and Horlock,1 and Mani and Acosta.2 All these
methods are numerical and considerable discrepancy between
theoretical and experimental results has been reported
(Ref. 4). The investigations reported here should help in the
development of an adequate cascade theory allowing for axial
velocity change.

In this paper, a theoretical and experimental investigation of
the flow around an airfoil in a contracting or diverging stream
is carried out. An expression for the vortex distribution,
which satisfies the kinematic condition on the wing surface
and the Kutta condition at the trailing edge, is derived. The
theory is valid for small variations in mean velocity (±25% of
the inlet velocity). The predicted values of total lift and the
local pressure distribution agree very well with the experi-
mental measured values. The experimental investigation is
carried out in a wind tunnel with sloping side walls to obtain
chordwise variation in mean velocity. The gap between the
side walls is varied linearly.
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II. Theoretical Development

The aerodynamics of a wing spanning a slightly converging
or diverging channel is investigated here. The variation of
the channel width is assumed to be linear and the length of the
contracting or diverging section is assumed to be the same as
airfoil chord. The experimental results presented later indi-
cate that the theory is valid up to about ±25% variation in
mean velocity (about its value at the leading edge), which
covers the majority of the flows encountered in practice. The
mean flow is assumed to be inviscid, steady and incompressible,
but nonuniform in the x direction (Fig. 1). For simplicity, a
linear contraction or divergence is assumed, but the theory can
be extended to other types of variation of the channel width.
The theory assumes that span wise flows are zero, which is
valid exactly at the plane of symmetry (midspan). The experi-
mental results show that the theory is valid at most of the
spanwise positions, except near the channel walls.

Referring to Fig. 1, if f/i and /*i are velocity and channel
width respectively at inlet,

(1)
where U is the local mean velocity and

(l/hi)/(dh/dx) = K = a const (2)

Thus,

dU/dx = - UKj(\ +Kx)=- UiK/(l + Kx)2 (3)

The continuity equation valid near the plane of symmetry is,

d(uh)/dx + d(vh)/dy = 0 (4)
where

u = U(x) + u'(x) (5)

u', v' are perturbations in velocity due to airfoil in the
contracting or diverging stream.

Knowing that

dU/dx=-(U/h)(dh/dx)

Eq. (4) can be expressed as

-(u'/U)(dUldx) + du'/dx + = 0 (7)

If the perturbation in velocity produced by the contraction
is the same order as those produced by the airfoil, and if these
perturbations are small compared to U, then the first term in
Eq. (7) can be neglected. Furthermore, the flow is irrotation-
al. Thus the perturbation potential satisfies the two-dimen-
sional equations. These approximations are in the theoretical
development, but the change in local mean velocities is taken
into account in calculating the perturbations produced by the

Fig. 1 Configura-
tion and notation.
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airfoil. Furthermore, Wilson et al.3 have proved that the
blade thickness has negligible effect in changing the aerody-
namic characteristics of a cascade of blades with mean velocity
change. Thus the problem on hand reduces to that of finding
the effect of mean velocity change on the circulation distribu-
tion.

Vortex Distribution

Using the thin airfoil approximation, the vortex distribution
along the airfoil chord can be determined from the kinematic
condition at any point x = x0

ydx
X0 — X

(8)

where y = vortex distribution, a = angle of attack, and 17 =
camber function.

The local velocity is given by

Kx) ~ - Kx + K2x2) (9)

where small order terms containing K3, K*, etc. are neglected.
Substituting Eq. (9) and

x = C/2(l - cos0)

x0 = C/2(l - cos</>)

in Eq. (8), the Kinematic condition reduces to

•[-¥<•- COS</>) + ,-HK'L
1 r y(0) s'm9d9

o COS0 — COS</>

Let us write

—— (0) = a — AQ + 2 An cosnO

The solution of integral Eq. (10) is then given by{

(10)

01)

+ 2 (An sin« 0)[-¥
where

1 + cos0

2 sin20 sin20 sin0
2 1 + cos0 2(1 + cos0)

E=l -cos0

(13)

(14)

(15)
Equation (12) satisfies Eq. (10) [with Eq. (11)] exactly and the

Fourier coefficients A0, Ai,....,An are functions of airfoil
geometry only, as in a plane flow (K= 0). Furthermore, the
y distribution satisfies the Kutta condition: y(jr) = 0. It
should be remarked here that the y distribution given by
Eq. (12) consists of basic distribution for plane flow (K= 0),
superposed on this distribution is the effect of change in mean
velocity.

The values of y/y2d, where y2d is the vortex strength for
plane flow with KC = 0, derived from Eq. (12) for a flat plate

t The definite integrals appearing in this equation can be solved
by well-known Glauert's integral. For example

SECTION A-A1

f" _ sin«0 sin0
Jo E cosO -cos*
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Fig. 2 Vortex distribution for a flat plate and cambered airfoil in
diverging and converging flow (theoretical).

at incidence and cambered airfoil § at a = 8° and at VR = 1.25
and 0.833 are plotted in Fig. 2. The velocity ratio VR is given
by

VR = U2/U, = 1/(1 + KC) (16)
The ratio y/y2 * increases continuously towards the trailing

edge of the airfoil for both these cases, when the mean velocity
(U) is increasing. The circulation increases across the entire
blade chord for an accelerating flow and decreases for a de-
celerating mean flow. Change in mean velocity seems to have
a larger effect for a flat plate at incidence as compared to a
cambered plate. Even at the leading edge, appreciable change
in y is observed for both cases (Fig. 2).

Circulation

Total circulation around the airfoil is given by

r =

Substituting Eq. (12) in the above expression and integrating,
the following expression results
2r

K2C2
5A0 t) (17)

The circulation in two-dimensional flow (KC = 0) is given by
7rU1C(2A0 + A1)

I 2 d = ———————-———————— (IX)

The ratio of circulation with and without change in mean
velocity is

(KC/2)[3A0 + A1-(A2/2)]-
_L = ! _ ________[(K2C2)/4][5Ao + Ai- A2 + (A3/4)]

(2A0
(19)

§ The camber of the airfoil used as a test case in Fig. 2 is the
same as that used for experimental investigation (Sec. III). The
camber is given by Eq. (11) with A0 = 0.157, At = 0.254, A2 =
-0.0935, A3 = -0.00776.
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Fig. 3 Variation of circulation and lift coefficient with velocity ratio
(theoretical).

The ratio of total circulation (T/T2d)9 with and without change
in mean velocity, is plotted in Fig. 3 at various velocity ratios
(VR) for a) a flat plate airfoil at incidence b) a circular arc
cambered airfoil at ideal incidence (A0 = A2 = A3-- = Q).
It is evident that the total circulation varies almost linearly
with VR for both flat plate and cambered airfoils. In both
cases, the circulation increases with accelerating flow and
decreases with decelerating flow.

Lift Coefficient

The lift of an airfoil in a contracting or diverging stream is

L= (CpU(x)ydx (20)
Jo

The corresponding expression for two-dimensional case is

L2d = pUi ydx
Jo

Hence the ratio of lift coefficients is

where CL and CL2d are normalized with respect to the same
inlet dynamic pressure.

Substitution of Eq. (12) and (9) in Eq. (21) results in the
following expression

KC
2

KCEV

KC

(22)
The above equation can be integrated to give (neglecting small-
order terms such as K3, K*9 etc.),
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KC[2A0 + Ai - (A2/2)] -
__ (K2C2I4)(3At - 3A2 + Ua/2) + 1A0)

(23)
The ratio of lift coefficients for a flat plate airfoil is given by

CL/CL2d =1-KC+ (1/S)K2C2 (24)
The corresponding expression for a circular cambered airfoil
at ideal incidence is

CL/CL2d = 1 - KC + (3/4)K2C2 (25)
The results derived from Eqs. (24) and (25) are plotted in Fig.

3. The lift coefficient increases in a converging mean flow
and decreases in a diverging mean flow.

Loading Coefficient

The change in local loading due to varying mean flow is
given by,

A/ = / - I2d = PU(x)y - pU,y2d (26)
Substituting for U from Eq. (9) and y from Eq. (12), and

after some simplification Eq. (26) can be expressed as (neglect-
ing small order terms K3, K*, . . . , etc.)

AC, =

where ACi is the change in loading coefficient and

^ = Cl2d = [C,(x, 0_) - C,(x, 0+)]2d (28)

Cp = static pressure coefficient on the airfoil surface.
It is clear from the preceding expression [Eq. (27)] that the

change in loading coefficient (based on inlet dynamic pressure)
increases continuously towards the trailing edge for converging
flows (K being negative) and vice versa for diverging flows
(K being positive).

It is interesting to note that the use of simplified expression
given above involves only the knowledge of Ci2d9 A0 and K.

Pressure Distribution
The pressure distribution on the airfoil is given by

Pi -f tpUS = pi + $p(U ±u' + u")2 (29)
where u' = perturbation due to y, and u" = perturbation due
to source and sink (thickness effect).

Using thin airfoil theory approximations and assuming that
the thickness effects are the same as that of plane flow, the
following expression for static pressure coefficient can be
derived

C* = li^ = 1 "W +u\Cp2d~ul\ —
(30)

where CP2d = pressure coefficient in plane flow (K = 0).
Substituting Eq. (9) for U/Ui and Eq. (12) for y(0) in Eq. (30),

the static pressure coefficient can be expressed as (neglecting
small order terms such as K3, K*, etc.),
Cp = (2Kx - 3K2x2) + (1 -

Kx + K2x2) icP2d-
- A 1+COS0
2A0——r-j- X | - -sm0

*^,< - r>J2 2 (An sum?) - +(KCE1 ~n (31)1 2 ' \
where B9 D and E are given by Eqs. (13-15).

The pressure coefficient on the airfoil surface (on both
pressure and suction surface) can be computed from the

previous equation from known values of CP2d9 K and Fourier
coefficients Ao, AI, ..., An.

The first two terms in Eq. (30) and the first term in Eq. (31)
corresponds to direct change (in the absence of airfoil) in Cp
distribution in the flow due to changing mean flow. Whereas,
the remaining terms represent the change in perturbation flow
due to airfoil in a converging or diverging flow.

III. Experimental Results

The validity of the theory developed in Sec. II is verified
by an experimental investigation of the flow around an airfoil
in a contracting stream. These investigations were carried
out with an isolated airfoil spanning the wind-tunnel side-
walls. A linear contraction, extending from leading edge to
trailing edge of the airfoil was obtained by using movable
sidewalls (BC, DE in Fig. 1). The movable sidewalls provide
for velocity ratios (VR) ranging from 1.00 to 1.26. The up-
stream and downstream tunnel sections were straight. The
leading and trailing edges of the sidewalls were faired to obtain
a smooth contraction.

The NACA-65-(8A2I8b) 10 airfoil section used is a com-
pressor blade of "trailing loaded" type. The loading at design
lift coefficient (=0.8) varies linearly over about the forward
80% of blade chord, beyond which it is essentially uniform.
Detail profile and camber geometry of this airfoil is given in
Ref. 5. The flow and airfoil geometry are shown in Table 1.
The airfoil incorporated twelve static taps on each surface.
The static pressures were measured at mid span (z = 0) as well
as at z = 3 in.

The experiment was run at three different incidence angles
for three velocity ratios (VR). The pressure distributions
measured at a= 1°, 6° and 8° and VR= 1.0, 1.115 and 1.26
are plotted in Figs. 4-7. It should be remarked here that the
pressure coefficients in all the cases are nondimensionalized
with respect to the inlet dynamic head.

It is evident from these plots (Figs. 4-7) that the change in

Table 1 Flow and airfoil geometry

Chord length (c)
Span (leading edge)
Incidence
Velocity ratio (VR)
Reynolds number

(based on chord length)

7 in.
14.5 in.
1°, 6° and 8°
1.0,1-115,1.26

-3.6 x 105

I O 2 0 3 O 4 0 5 0 6 0 7 0 9 0 9 O I O O
-^- PERCENT

Fig. 4 Measured airfoil pressure distribution for a = 1°, and VR =
1.00 and 1.26.
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Fig. 5 Measured and predicted airfoil pressure distribution for a = 6
and VR = 1.00,1.115 and 1.26.

Fig. 7 Measured and predicted airfoil pressure distribution for a = 8°,
and VR= 1.00 and 1.26.

VR substantially affects the pressure distribution, especially on
the suction surface. The trend is consistent at all the inci-
dences investigated here. The change in Cp distribution for
VR ^ 1.0 is caused by two effects: a) change in mean velocity
U(x) in the absence of airfoil—direct effect; and b) change in y
distribution—indirect effect.

Both of these changes affect the pressure coefficient in Eq.
(30). Equation (31) indicates that the direct effect of an in-
crease in mean velocity (if y is held constant) is to increase
suction pressures and decrease pressure on the pressure surface.
Whereas, an increase in y (indirect effect) brings about an in-
crease in both suction pressure as well as the pressure on the
pressure surface. Hence, an increase in U has a much more
dominant effect on the suction surface, where the two effects
are cumulative. Whereas, increase in y as well as v has
opposing effects on the pressure surface Cp distribution (Figs.
4-7). Furthermore, the departure in pressure distribution
between plane flow (K= 0) and the converging flow (K, —ve)
progressively increases towards the trailing edge. Total lift
increases continuously with increase in VR. It is also evident
from Figs. 6 and 7 that the pressure distribution is almost iden-
tical both at mid span (Z = 0) and at Z = 3 in., thus confirming
the two-dimensional flow approximations made in the theo-
retical development of the flow.

Comparison with the Theoretical Predictions
In order to compare the predicted values of lift, loading and

pressure distribution with the measured values, a knowledge of
the Fourier coefficients A0, Ai9...,An [Eq. (11)] is essential.
These can be derived from the numerical integration of the
equations (since the camber line of NACA-65-(8A2l8b)io
profile cannot be represented by a simple function),

Fig. 6 Measured and predicted airfoil pressure distribution for a = 8°,
and VR= 1.00and 1.115.

An = - r^(0)cos«0</0
77 J0 dX
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Fig. 8 Measured and predicted variation of lift coefficient with
velocity ratio.

The values of drj/dx has been tabulated in Ref. 5. The
values of Fourier coefficients so derived are: A0 = a -f 0.0175,
Aj. = 0.254, A2 = -0.0935 and A* = -0.00776 etc.

The ratio of lift coefficients (CL/CL2d) derived from Eq. (23)
at various values of VR are plotted in Fig. 8 and compared
with the measured values. The agreement is excellent at all
incidences.

It is interesting to note that the ratio CL/CL2d varies almost
linearly with VR. Both experimental and theoretical investi-
gations (Figs. 3 and 8) seem to confirm this. Furthermore,
these results indicate that

CL/CL2d ~ VR (32)

Even the theoretical expression [Eq. (23)] indicate that for a
circular arc cambered airfoil in a slightly converging or diverg-
ing stream this ratio is

The change in loading coefficient (ACi) predicted from
Eq. (27) are compared with experimental values at a = 6° and
VR = 1 . 1 1 5 and 1 .26 in Fig. 9. The agreement is good in both
cases. The departure is large only near the leading and trailing
edges of the airfoil. It is evident from Fig. 9 that the values
of ACi progressively increase towards the trailing edge.

The measured values of CP2d (Figs. 4-7) are used in Eq. (31)
in predicting the pressure distribution on the airfoil. The
predicted pressure distribution on the airfoil at a = 6°, 8° and
VR = 1.115 and 1.26 are plotted in Figs. 5, 6, and 7. The
agreement is quite good at all chordwise locations on both the
surfaces of the airfoil. Appreciable departure between theory
and experiment occurs only at larger VR(=1.26) near the
trailing edge (Figs. 5 and 7).

0.30

0.25

Ac,

0.20-

0.10

, VR=I.26

THEORY
O , v EXPT

a=6°,VR=I.M5

2O 4O 6O 8O IOO

Fig. 9 Measured and predicted chordwise distribution of change in
loading coefficient for oc = 6°, VR = 1.115 and 1.26.

It is evident from these predicted and measured pressure
distributions in a converging flow, the effect of increase
in U and y are cumulative on the suction side (i.e., suction
pressures are increased considerably) and are opposing on the
pressure side (i.e., no appreciable change in pressure on the
pressure side of the airfoil). Whereas in a diverging flow,
where U as well as y decrease, these effects are cumulative on
the pressure surface. Whereas, the suction pressure decreases
[see Eq. (31)].

Some of these conclusions are in conformity with those of
Schulze et al.,6 who carried out experiments in a compressor
rotor with converging and diverging hub wall. For A2/Ai
(outlet/inlet area—diverging flow) = 1.15, the flow turning
angle decreases from those of plane flow (A2/Ai = 1, K= 0)
whereas, increased flow turning is observed in a converging
case (A2/Ai==OJQ and 0.85). In a compressor rotor, the
diverging flow presents a more severe limitation on the per-
formance due to larger pressure rise brought about by the
diffusion of the primary flow, in the absence of blade row.
The behavior of the boundary layer on the blades as well as on
the end walls would show a greater tendency to separate, thus
increasing the viscous losses, both profile and end wall losses.
This is one of the reasons for the deterioration of the rotor
performance observed by Schulze et al. in the case of diverging
flow. The peak efficiencies measured by Schulze et al. at
A2/Ai = 1.15, 1.00, 0.85 and 0.7 are, respectively, 93, 97.5,
96.5 and 97.5%.

It is clear that the theory devleoped in this paper predicts
not only the lift but also the loading coefficient and pressure
distributions accurately for 1.0 < VR < 1.25. It is likely to be
accurate for diverging flows, in the absence of viscous effect,
for 0.7 < VR < 1.0. The range, 0.7 < VR < 1.25, covers the
majority of the flows encountered in practice.

IV. Discussion and Conclusions

It has been established in this paper, both theoretically and
experimentally, that the effect of change in mean velocity on
the airfoil characteristics is considerable and its effect on



360 B. LAKSHMINARAYANA AND M. T, WHITE J. AIRCRAFT

pressure distribution, circulation and lift can be predicted
accurately for small change in mean velocity (0.7 < VR < 1.25).
The expression for vortex distribution, derived in this paper
satisfies the kinematic and Kutta conditions exactly. It is
found that the ratio of lift coefficients in diverging or converg-
ing flow and the two-dimensional value varies linearly with
VR, i.e.,

CL/CL2d ~ VR

In a converging flow, the circulation and lift increases with
increase in velocity ratio (outlet velocity/inlet velocity). There
is also considerable change in airfoil pressure distribution, its
effect being dominant on the suction surface. In a diverging
flow, both the circulation and lift decrease with decrease in
velocity ratio. The effect of change in mean velocity on
pressure distribution is likely to be dominant on the pressure
surface. These changes in the airfoil pressure distribution
affect the viscid characteristics of the airfoil, thus adversely
affecting the cavitation characteristics of a hydrofoil or pump
blade, stall characteristics of a wing, pressure rise character-
istics of a fan or compressor blade row. Incorporation of
these effects is, thus, a practical necessity.

The pressure distribution measured at midspan and at Z =
3 in. are found to be identical, thus confirming the validity of
the quasi two-dimensional approach taken in this paper. The
theory is valid exactly at the midspan of the airfoil, where the

span wise velocity is zero, and becomes progressively inac-
curate near the converging or diverging walls, where the span-
wise velocities cannot be neglected.
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Methodology for Structural Optimization of STOL
Aircraft Vertical Stabilizers

BERTRAM C. WOLLNER*
Lockheed-California Company, Burbank, Calif.

A method is described for selecting the optimum vertical surface configuration for STOL transport configura-
tions, based upon structural weight and performance requirements. A minimization technique, using the Fiacco-
McCormick penalty function1 is used to obtain a solution based upon minimization of an objective function.
Design loads for the vertical surface are considered to be defined by the requirement for trim under an engine
failure condition. Since structural weight is configuration sensitive, the optimum surface is defined by this
condition. Variables include maximum surface deflection and control surface chord ratios. Structural strength
requirements are established for a range of configurations typical of STOL aircraft designs. Structural weight
is defined in terms of applied load, stabilizer configuration and relevant design parameters. This relation defines
an objective function which is minimized in determining the optimum stabilizer configuration based upon struc-
tural weight. The system derived is solved using the SLUMT algorithm of Fiacco and McCormick with the
Powell direct search technique for constrained nonlinear optimization.2

Nomenclature
ARe = vertical stabilizer effective aspect ratio
ARV = vertical stabilizer aspect ratio
b = span, ft
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participated in its implementation.

Index categories: Optimal Structural Design; Aircraft Configura-
tion Design.
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CR = vertical stabilizer root chord, ft
cT = vertical stabilizer tip chord, ft
cw = wing mean chord, ft
Ci-ma* = airplane maximum lift coefficient
Cnp = yawing moment derivative per degree sideslip
Cn6 = yawing moment derivative per degree control surface

deflection
Cyp = side force coefficient per degree sideslip
Cy8 = side force coefficient per degree control surface

deflection
/„ —tail length, ft
q = dynamic pressure, psf
PYVT = total aerodynamic load on vertical stabilizer, Ib
S = area, sq. ft
(T— D)y = yawing moment due to loss of engine, ft-lb
W = weight, Ib


